

Neutron diffraction patterns measured with a high-resolution powder diffractometer installed on a low-flux reactor

V. L. Mazzocchi¹, C. B. R. Parente¹, J. Mestnik-Filho¹ and Y. P. Mascarenhas²

¹ Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), CP 11049, 05422-970, São Paulo, SP, Brazil ² Instituto de Física de São Carlos (IFSCAR-USP), CP 369, 13560-940, São Carlos, SP, Brazil

E-mail of corresponding author: vlmazzo@ipen.br

Research Reactor Center (CRPq)

IEA-R1 Reactor

- Swimming pool type, light water moderated with 23 graphite and 9 beryllium reflectors, designed to operate at 5 MW

- Current power: 4.5 MW
- Neutron in core flux: 7,0 x 10¹³n/cm².s

- Suitable for the use in: basic and applied research, production of medical radioisotopes, industry and natural sciences applications.

CRPq's main program

- Nuclear and condensed matter physics
- Neutron activation analysis
- Nuclear metrology
- Applied nuclear physics
- Graduate and postgraduate teaching
- Reactor operators training

The old IPEN-CNEN/SP neutron multipurpose diffractometer

- a single BF₃ detector
- a single wavelength (λ =1.137 Å)
- a point-to-point scanning data measurement

The new IPEN-CNEN/SP neutron powder diffractometer

• a Position Sensitive Detector (PSD) array formed by 11 linear proportional ³He detectors, scanning a $2\theta = 20^{\circ}$ interval

• 400 intensity points measured in a single 20 step all at once ($\Delta 2\theta = 0.05^{\circ}$)

4 different λs: 1.111, 1.399, 1.667, 2.191 Å

*Parente, C. B. R., Mazzocchi, V. L., Mestnik-Filho, J., Mascarenhas, Y. P., Berliner, R. Nucl. Instr. and Meth. in Phys. Res. A 622 (2010) 678-684.

Electronics associated to the HRPD "Aurora"

(HRPD = High Resolution Powder Diffractometer)

in comparison to the old diffractometer

- powder patterns with higher resolution
- rate of data collection higher by an average factor
- of 600 (per intensity point)
- more λs available, more different materials can be studied

Great interest of the scientific and technological communities for crystallographic studies in new materials.

Resolution curves for the HRPD "Aurora"

The Rietveld Method

 \Rightarrow Fitting of an experimental powder diffraction pattern by the profile of a theoretical pattern, calculated according to a structure model assumed for the material under analysis.

- \Rightarrow Deviation between experimental and theoretical patterns is minimized by the least-squares method.
- \Rightarrow Analysis of multiphase patterns obtained with x-rays or neutrons:
 - refinement of the structural parameters of the phases;
 - quantitative phase analysis;
 - microstructural phase analysis (surface roughness effects, microabsorption and mean grain size).

Definition of the numerical criteria of fit

$$R_{p} = R\text{-pattern:} \quad R_{p} = 100 \left\{ \frac{\Sigma |\gamma_{i}(\text{obs}) - \gamma_{i}(\text{calc})|}{\Sigma \gamma_{i}(\text{obs})} \right\}$$

$$R_{Wp} = R\text{-weighted pattern:} \quad R_{wp} = 100 \sqrt{\frac{\Sigma w_{i} [\gamma_{i}(\text{obs}) - \gamma_{i}(\text{calc})]^{2}}{\Sigma w_{i} \gamma_{i}^{2}(\text{obs})}} \quad , \text{ with } w_{i} = \frac{1}{\gamma_{i}(\text{obs})}$$

$$R_{e} = R\text{-expected:} \quad R_{e} = 100 \sqrt{\frac{(N-P)}{\Sigma w_{i} \gamma_{i}^{2}(\text{obs})}}$$

$$Goodness\text{-of-fit:} \quad S = \frac{R_{wp}}{R_{e}} \quad \text{or} \quad \chi^{2} = S^{2}$$

Rietveld profile fit for Fe₂O₃

Crystalline structure:

Space Group $\Rightarrow R\overline{3}c$ (trigonal) Atomic positions \Rightarrow Fe (4c) and O (6e)

Magnetic structure:

Antiferromagnetic - $\mu(Fe) = 4.9 \mu_B$

Rietveld profile fit for NiO

Rietveld profile fit for BaY₂F₈:Nd

Rietveld profile fit for $Pb_{0.6}Ba_{0.4}Zr_{0.65}Ti_{0.35}O_3$ (PBZT40)

Work in cooperation with 'Laboratório de Cristalografia do IFUSP- São Carlos'

Rietveld profile fit for ReO₂

 \Rightarrow Time of measurement = 54 h \Rightarrow Reactor power = 3.5 MW

Numerical criteria of fit: $-R_{P} = 0.019$ $-R_{WP} = 0.025$ - Reduced $\chi^2 = 2.7$

Re 0

Rietveld profile fit for Ta₂O₅

Work in cooperation with 'Laboratório de Crescimento de Cristais do IFUSP - São Carlos'

International Conference on Research Reactors 14-18 November 2011 Rabat, Morocco

Rietveld profile fit for Be₃Al₂Si₆O₁₈

Be₃Al₂Si₆O₁₈

......

SiO

Al₂O₂

Work in cooperation with 'Instituto de Física da USP - São Paulo'

 \Rightarrow Be₃AI_{1.83}Fe_{0.17}Na_{0.03}Si₆O₁₈ (aquamarine)

$\Rightarrow Be_{3}AI_{1.89}Fe_{0.11}Na_{0.25}Si_{6}O_{18} \text{ (beryl)}$

 $\Rightarrow Time of measurement = 54 h$ $\Rightarrow Reactor power = 3.5 MW$

20

15

10

5

0

10 20 30 40 50 60 70 80 90 100 110 120 130

Intensity (10³ neutrons)

Wt. % $(Be_3AI_{1.89}Fe_{0.11}Na_{0.25}Si_6O_{18}) = 96.94$ Wt. % $(SiO_2) = 2.70$ Wt. % $(AI_2O_3) = 0.36$

Numerical criteria of fit:-
$$R_P = 0.022$$
- $R_{WP} = 0.032$ - Reduced $\chi^2 = 4.0$

Wt. % $(Be_3AI_{1.83}Fe_{0.17}Na_{0.03}Si_6O_{18}) = 97.87$ Wt. % $(SiO_2) = 1.75$ Wt. % $(AI_2O_3) = 0.38$

20 (degrees)

Numerical criteria of fit:-
$$R_P = 0.024$$
- $R_{WP} = 0.034$ - Reduced $\chi^2 = 4.7$

ipe

At present:

-Rietveld quantitative phase analysis of powder patterns measured at room temperature

In the near future:

- Measurements at high and low temperatures
- Measurements at high pressure (room temperature)
- Residual stress measurements

Scientific staff:

- Dr. Carlos Benedicto Ramos Parente (cparente@ipen.br).
- Dr. Vera Lucia Mazzocchi (vlmazzo@ipen.br).
- Dr. José Mestnik Filho (jmestnik@ipen.br).

Collaborators:

- Prof. Dr. Yvonne Primerano Mascarenhas (yvonne@if.sc.usp.br) IFSCar – Universidade de São Paulo (USP), São Carlos, SP, Brazil.

- Dr. Ronald Berliner (rberliner@InstrumentationAssociates.com) Instrumentation Associates (IA), Durham, NC, USA.

- Dr. Luiz Carlos de Campos (lccampos@pucsp.br) Pontifícia Universidade Católica de São Paulo (PUCSP), São Paulo, SP, Brazil.

IEA-R1 reactor core

The Rotating-Oscillating Collimator (ROC)*

Placed at the entrance to the PSD shield in order to:

 eliminate parasitic scattering from furnaces or cryorefrigerators (only reducing the scattered intensity by *ca.* 10%);

 make the PSD less sensitive to ambient background.

* Built by *Instrumentation Associates*, 2 Davis Drive, P.O. Box 13169, Research Triangle Park, N.C. 27709-3169, USA (rberliner@InstrumentationAssociates.com)

The focusing Si bent monochromator*

At a take-off angle of 84° the following reflections/wavelengths can be attained:

> 533 / 1.111 Å 511 / 1.399 Å 331 / 1.667 Å 311 / 2.191 Å (nominal values)

Close-up of the focusing Si bent monochromator, goniometer and luminaire

* Built by *Instrumentation Associates*, 2 Davis Drive, P.O. Box 13169, Research Triangle Park, N.C. 27709-3169, USA (rberliner@InstrumentationAssociates.com)

The sapphire filter

A sapphire filter has been installed in the neutron powder diffractometer "Aurora". The filter reduces the background (BG) of the diffraction patterns by cutting fast and epithermal neutrons ($\lambda \le 1.0$ Å) off the polychromatic beam. It has been inserted into the in-pile collimator.

A "cage" in the middle of the collimator accommodates the sapphire filter.

The filter is formed by 3 sapphire windows* encased in an aluminum cylinder. Characteristics of windows:

- orientation C plane
- 100 mm dia. x 25.4 mm thick
- polished both faces
- chamfered both faces

*Single crystals of good optical quality grown by *Crystan Ltd., UK* (sales@crystran.co.uk).

A sample holder immersed in the monochromatic neutron beam

Extra shield Neutron beam monitor (fission chamber) ROC Vanadium cylindrical sample holder* Sample rocking device * Vanadium sample holders currently used (0.15 mm wall thickness): - 3.17 and 6.35 mm diameter (~67 mm height)

- 9.52 mm diameter

(~50 mm height)